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Abstract

Parallel computing is playing an increasingly large role in statistical computations.

One reason for this is the computational complexity of modern techniques. In this

paper, we present a parallel algorithm that provides a considerable speed-up in the

running of a large class of Markov chain algorithms. We formally show that it remains

theoretically sound, and derive a version of Amdahl’s Law to demonstrate the benefits

of parallelizing. Finally, we demonstrate the use of the methodology on Hierarchical

Linear Models via our R-package McParre.
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1 Introduction

There is no doubt that the role of parallel computing in statistical computations is getting

bigger by the day. Journal papers that exhort the use of parallel processors in statistical ap-

plications, such as Suchard et al. (2010) and Zhou et al. (2010), have become more frequent

in recent times. For a comprehensive review of the many parallel computing techniques at

our disposal today, the reader is referred to Kontoghiorghes (2006) and Matloff (2011).

What exactly is driving this need for parallel computing? All signs point to increasingly

large datasets, and to the need to solve problems of increasing computational complex-

ity. In the field of genetics, for example, it can be argued that datasets are increasing in

size faster than the processing hardware is improving to handle them. On the other hand,

methodologies such as bootstrapping require more computing resources than typical statis-

tical techniques, simply by design. Similarly, Monte Carlo simulation techniques allow more

sophisticated analyses of data, but again, they demand more processing power. These would

naturally point to a need to boost the speed of our individual processors, but the trend is

very clearly towards linking up processors of moderate speed rather than a concerted effort to

increase the speed of individual processors. The reason for this is simple: The former option

can be executed at a fraction of the cost of the latter. Doubling the speed of a processor is

costly because it requires memory access speeds and cooling to be concomitantly improved.

Adding another processor, on the other hand, would not give the same speed and would

require a rewrite of programs in order to fully optimize the new parallel processing environ-

ment, but it is inordinately cheap, easy to do, and is a scalable solution. This explains why

supercomputers are prohibitively expensive except to dedicated research institutes, whereas

cluster computing possibilities are readily available and accessible. Most universities have

their own cluster, while companies such as Amazon, IBM and now HP, have made cloud

computing available to anyone at an extremely cheap cost. For this reason too, our desktops

and notebooks already contain multiple processors.

In this section we shall touch on some of the topics covered in Suchard et al. (2010) and
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Table 1: Taxonomy of parallel processing architectures, as per Flynn (1972)

SISD Single Instruction Single Datastream
MISD Multiple Instruction Single Datastream
SIMD Single Instruction Multiple Datastream
MIMD Multiple Instruction Multiple Datastream

Kontoghiorghes (2006), but our main aim is to introduce the parallel computing architecture

and approach that we have chosen for our purpose. Years ago, a taxonomy of parallel

processing architectures was put forward in Flynn (1972). Today, the dividing lines are not

as clean as before since many contemporary parallel set-ups are hybrids of those outlined in

that seminal paper. However the original breakdown is still a good starting point.

Referring to Table 1, models for parallel computation can be categorised into 4 basic

kinds. Single-core desktops and notebooks from a few years ago fall under the SISD category.

The MISD model is used only in specialised applications, such as fault-tolerant computing.

The two most widely used architectures today are SIMD and MIMD. GPU processing is one

good example of an SIMD machine, while a Beowulf1 cluster is one example of an MIMD

machine. The MIMD model can be further sub-divided into shared memory machines and

distributed memory ones. Distributed memory MIMD machines typically co-ordinate their

work by passing messages to one another.

Which architecture is chosen depends on the algorithm we intend to parallelize, and how

we intend to parallelize it. In a medium-grain parallelization, it is possible to divide the

domain of work into independent data “chunks” and work on them concurrently. In such

problems, it is natural to utilize the SIMD architecture, in which each processor can access

and work on the disparate chunks. In a more coarse-grained parallelization, where individual

functions or procedures are to be run concurrently, the MIMD model is more appropriate.

Our intention is to tackle the problem of running a Markov chain Monte Carlo (MCMC)

algorithm in parallel. It is not immediately apparent how such an algorithm can be adapted

1A cluster of computers connected by a fast network
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to run in parallel, as such procedures are inherently sequential in the sense that they require

the current state to be generated before proceeding. The goal here is to study the best

method of adapting a general class of MCMC algorithms so as to fully capitalize on a

parallel computing environment.

The rest of this paper is outlined as follows: Section 2 contains a short overview of

current approaches to running Markov chains in parallel. Section 3 introduces our parallel

algorithm and provides the theoretical justification for it. Section 4 provides pseudo-code for

our algorithm and analyses the speed-up that it can potentially provide. Section 5 contains

examples to demonstrate that the methodology works and provides considerable speed-up.

Before finishing with a discussion on future directions, we introduce McParre - an R package

for running our parallel algorithm on a cluster.

2 Parallel MCMC

One notable attempt at running a Metropolis-Hastings chain in parallel can be found in

Brockwell (2006), where the algorithm calls on a cluster to pre-compute likelihoods of the

candidate distribution and thus save time. It has been extended in Strid (2010) to the case

where the current state is used to make “better” future candidate predictions. By “better”,

the authors mean that they can tune the candidate until an optimal acceptance rate is

achieved. However, this destroys the Markovian nature of the chain, and would fall under

the category of adaptive algorithms rather than a traditional MCMC algorithm.

The most direct method of transplanting an MCMC algorithm onto a cluster would be

to run one chain of length N on each of n processors, and then use the mean of the means

as a point estimate of the desired integral, and the standard error of the observed means as

an estimate of the variability in order to get a confidence interval. Although appealing in

its simplicity, this method provides no savings in terms of computing time and it will not

always provide accurate results. For example, in Fishman (2001) (Chapter 6), it is shown

that under mild assumptions on the rate at which the asymptotic bias reduces to 0, as the
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number of chains n increases to infinity, the burnin in each chain, k, has to increase faster

than log n in order for the coverage probability of the confidence interval to hold. Thus it

almost defeats the purpose of running the chain on a cluster, where we hoped that having

more processors would have gained us time and/or precision.

Regenerative simulation, on the other hand, provides a very clean way of parallelizing

MCMC algorithms. At every regeneration point, the random variable generated is inde-

pendent of its current state, and everything before it. Hence regeneration points provide

us with independent segments or “tours” that can be run on separate processors, and then

concatenated later!

Our intention, then, is to run individual tours on separate processors and then join them

together. This is a coarse-grain parallelization of the MCMC algorithm, and hence is most

suited to the MIMD distributed memory model architecture. There are instances where

MCMC algorithms have been run on GPUs, that is, on an SIMD model. The best example

we know of is in Suchard et al. (2010), where a fine grain parallelization is applied to a Gibbs

sampler in order to parallelize and provide a speed up within the iterations. GPUs afford

an incredible speed-up. However, they require very careful implementation of an algorithm,

which translates to a long development time. What we aim for is to allow a researcher to run

a regenerative MCMC algorithm, as long as they can provide the minorization (see Section 3

for the definition and explanation of required MCMC concepts). Any increase in processing

power (by adding nodes) will then provide a speed-up by decreasing the execution time to

run a fixed number of tours.

3 Regeneration in Parallel

In this section, we shall formally lay down our notation, thus clarifying, for example, what

we have referred to as regenerations and tours. Let Φ = {X0, X1, . . .} be a Markov chain

taking values in the sample space (E,E ) with transition kernel P (·, ·), where E is typically

Rk and E are the Borel sets on E. Also assume that Φ possesses the following properties:
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1. Φ has a stationary distribution π. In other words, π(A) =
∫
P (x,A)π(dx) for all

A ∈ E .

2. Φ is π-irreducible, aperiodic and Harris recurrent.

3.1 A Markov Chain Central Limit Theorem

Suppose we wish to use an MCMC algorithm to estimate Eπg =
∫
g(x)π(dx). The assump-

tions above imply that we have an ergodic theorem, which yields

ḡ =
1

n

n−1∑
i=0

g(Xi)→ Eπg a.s. as n→∞.

If in addition we have that Eπ|g|2+ε < ∞ for some ε > 0, then, as shown in Chan & Geyer

(1994), we can apply a Central Limit Theorem (CLT) to obtain a confidence interval for

Eπg.

Theorem 3.1 (Chan & Geyer (1994)). Suppose assumptions 1. and 2. hold for Φ. If Φ is

geometrically ergodic and Eπ|g|2+ε <∞ for some ε > 0, then2

√
n(ḡ − Eπg) N(0, γ2) as n→∞,

where

γ2 = Varπ[g(X0)] + 2
∞∑
i=1

Covπ[g(X0), g(Xi)].

Unfortunately, there does not exist a straightforward estimate of γ2, even though there is

a vast amount of research being done in this area. One of the more promising candidates to

estimate γ2 is the Batch Means estimator (see Jones et al. (2006), Flegal et al. (2008) and

Flegal & Jones (2010)). However, it requires two levels of asymptotics in order to achieve

consistency - both the batch size and the chain length have to tend to infinity, and the

batch size is typically chosen by convention rather than by derivation. On the other hand,

2 denotes convergence in distribution
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introducing regeneration times into a Markov chain allows us to break it up into i.i.d blocks,

or tours. Applying the classical CLT to these i.i.d blocks yields a CLT with a naturally

arising consistent estimate of the variance. In addition, using the regeneration CLT removes

any need for the chain to be in stationarity.

3.2 Minorization and Regereneration

In order to introduce regeneration times, we have to “split” the chain up first. For this we

need to minorize it. The concept of minorization goes back to Nummelin (1978) and Athreya

& Ney (1978); see also Nummelin (2004).

Definition 3.1 (Minorization Condition). A Markov transition kernel P (·, ·) satisfies a mi-

norization condition if there is a measurable function s and a finite non-negative measure ν

such that for all x ∈ E and A ∈ E ,

P (x,A) ≥ s(x)ν(A). (1)

The function s is called a small function, and ν is referred to as a small measure. Since

the latter is finite, we can always normalize it to ensure that it is a probability measure, and

absorb the normalizing constant ν(E) into s(x). Henceforth, we shall always assume that

this is the case. Since ν(E) = 1, it follows that 0 ≤ s(x) ≤ 1.

Minorization implies that we can split P into a mixture of two transition kernels, because

P (x, dy) = s(x)ν(dy) + (1− s(x))Pr(x, dy), (2)

where Pr(x, dy) = (P (x, dy)− s(x)ν(dy))/(1− s(x)). We call Pr the residual kernel. Given

Xn = x, consider generating the chain in the following manner:

(i) Generate δn ∼ Bernoulli(s(x)).

(ii) If δn = 1, generate Xn+1 ∼ ν.
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(iii) Otherwise, generate Xn+1 ∼ Pr(x, ·).

Several results can be shown immediately about this new sequence (Xn, δn) (Nummelin,

2004; Robert & Casella, 2004). The first result is that (Xn, δn) is a Markov chain. Sec-

ond, the marginal sequence {Xn} is a Markov chain that follows the law described by our

original kernel P . Lastly, whenever δn = 1, we have a regeneration, meaning that the subse-

quent portion of the chain {(Xn+1, δn+1), (Xn+2, δn+2), . . .} is independent of the past. This

independence arises because Xn+1 is generated from ν(·) and not P (Xn+1, ·).

In the mixture described above, it might be difficult to generate a random variable from

Pr, but, following Mykland et al. (1995), this can be neatly sidestepped, since the Radon-

Nikodym derivative of ν with respect to P is just

Pr(δn = 1|Xn = x,Xn+1 = y) = r(x, y) =
s(x)ν(dy)

P (x, dy)
. (3)

Thus, to generate the regenerative Markov chain, we only need generate Φ according to P ,

the original Markov chain. The “bell” variables δn are generated according to (3), and δn = 1

signals that there is a regeneration. We never have to generate from the residual distribution

Pr.

Definition 3.2 (Regeneration times and tours). Let 0 = τ0 < τ1, . . . be defined by τi+1 =

min{n > τi : δn−1 = 1} The τi’s are referred to as the random regeneration times. Tours are

defined by the sets of random variables {Xτi , Xτi+1, . . . , Xτi+1−1}.

Assume that Φ is run for a fixed number of tours, R. In other words, the chain was

stopped on the Rth occasion that δi = 1. Then if we let Ni be the length of the i-th tour,

that is, Ni = τi − τi−1, and we define the sum of the observed values in the i-th tour to be

Si =

τi−1∑
j=τi−1

g(Xj),

then the random vectors (Ni, Si) are independent and identically distributed for i = 1, 2, . . . , R.
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If we know that EνN
2
1 and EνS

2
1 are finite, then we can apply the classical CLT to obtain

√
R(ḡR − Eπg) N(0, σ2) as R→∞, (4)

where

ḡR =
1

τR

τR−1∑
j=0

g(Xj) =

∑R
i=1 Si∑R
i=1 Ni

and σ2 =
Eν [(S1 −N1Eπg)2]

(EνN1)2
. (5)

A consistent estimator of the variance is given by

σ̂2 =
1
R

∑R
i=1(Si −NiḡR)2

N̄2
. (6)

We pointed out earlier, just prior to equation (4), that that the regenerative CLT requires

Si and Ni to have finite second moments. The achievement of Hobert et al. (2002) was

proving that the same conditions as Theorem 3.1 are also sufficient for the regenerative CLT

to hold.

Theorem 3.2 (Hobert et al. (2002)). Suppose assumptions 1. and 2. hold for Φ, and that

Φ can be minorized just as in Definition 3.1. If Φ is geometrically ergodic and Eπ|g|2+ε <∞

for some ε > 0, then EνN
2
1 and EνS

2
1 are both finite. It follows that the CLT in equation (4)

is applicable.

3.3 Regeneration and Parallization

It should now be apparent that if we can introduce regeneration into a Markov chain Φ, then

we can run several of them in parallel, and essentially concatenate the chains. Consider a case

where we have d processors, each running a Markov chain dictated by the same transition

kernel P . We shall index the d chains as follows:

Φi = {Xi,0, Xi,1, . . .} for i = 1, . . . , d.
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Assume that P (·, ·) satisfies the minorization condition given in Definition 3.1, and that all

chains are initialized with the small measure

Xi,0 ∼ ν independent for i = 1, . . . , d.

We set Ri to be the (random) total number of tours in chain i, and Ni,j to be the length of

the j-th tour in chain i, where i = 1, 2, . . . , d and j = 1, 2, . . . , Ri. Finally, we redefine R

and N̄ to be R =
∑d

i=1Ri and N̄ = (1/R)
∑

i

∑
j Ni,j. The key point of this procedure is

that the chains are initialized and run independently, which leads to the pairs (Ni,j, Si,j) still

being independent and identically distributed. As a result, the following Proposition holds.

Proposition 3.1 (Regenerative CLT from parallel chains). Suppose Φi satisfies the condi-

tions in Theorem 3.2 for all i = i, . . . , d. Then if Eπ|g|2+ε <∞ for some ε > 0, the following

CLT holds:
√
R(ḡR − Eπg) N(0, σ2) as R→∞, (7)

where

ḡR =

∑d
i=1

∑Ri

i=1 Si,j∑d
i=1

∑Ri

i=1Ni,j

, (8)

and a consistent estimate of σ2 is given by

σ̂2
g =

1
R

∑d
j=1

∑Ri

i=1(Si,j −Ni,j ḡR)2

N̄2
. (9)

Current methods of regenerative MCMC algorithms typically involve first runnning a

long sequential chain starting from an arbitrary distribution. Bell variables are then filled

in at each iteration of the sequential chain by generating Bernoulli random variables with

success probabilities given by equation (3). This process splits the chain into independent

chunks, yielding the (Ni, Si) pairs that we need in order to apply Theorem 3.2.

What we propose instead is generating the bell variables alongside the actual chain.

Whenever the bell variable generated is a success, it indicates the completion of a tour. We

10



can then begin a new tour by restarting with a draw from ν. With this approach, we can run

each tour on a separate processor, and form ḡR and σ̂2
g from the resulting independent tours.

Although ḡR is no longer the ergodic mean from a long non-regenerative chain, Proposition

3.1 proves that the individual Markov chains can, in fact, be treated as one long chain. The

properties of the estimates of the mean and variance are identical to ones from one long

chain.

4 Speed-up from Parallelization

In this section we present pseudo-code to outline the proposed parallel algorithm. We then

analyze it by deriving bounds on the speed-up that it yields. Our intention in introducing

the bounds is to point out that the speed up we attain from using this algorithm depends on

the distribution of the tour lengths. Through an example, we demonstrate that the upper

bound can give a very good indication of the possible speed-up.

In Amdahl (1967), a method to analyze the speed-up of an algorithm was introduced.

Suppose that an algorithm consists of A float-point operations. Assume that a fraction f of

those operations can be sped up to run at V1 float-point operations per second (flops), and

the remaining operations have to remain running at V2 flops, with V2 � V1. Then the new

execution time of the algorithm is

tfast = f
A

V1

+ (1− f)
A

V2

>
(1− f)A

V2

.

Compared with tslow = A/V2, the speed-up afforded by the acceleration is

s =
tslow
tfast

<
1

1− f
. (10)

The above inequality is known as Amdahl’s Law, and can be used to derive a bound on

the maximum speed up of an algorithm. It can be extended to parallelization of a serial

algorithm in an analagous way. Suppose that a serial algorithm takes t1 seconds to execute.
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Assume that a fraction f of the algorithm can be executed in parallel on p processors ideally.

In other words, this fraction f of the algorithm can be executed on p processors in exactly

ft1/p seconds. Though this is unrealistic, it greatly simplifies the analysis. The speed-up

can again be bounded by the same quantity as above:

s =
t1

ft1/p+ (1− f)t1
=

p

f + (1− f)p
<

1

1− f
.

Now consider the serial algorithm that we wish to parallelize:

begin program

read input; initialization;

for (i=1,. . . ,R)

generate 1 tour;

end for;

evaluate results;

end program

It is not clear what fraction f of our code can be parallelized. In situations like this, it

would be better to consider an alternative view. In Gustafson (1988), the author considered

the inverse question to Amdahl: Given a parallel algorithm, how much faster would it be

compared to running it on a serial processor? Put in this way, our algorithm becomes easier

to analyze, but it is still complicated by the fact the number of operations in each tour is a

random quantity.

Consider the idealized version of our parallel algorithm, and run R tours. Suppose we

have R + 1 identical processors at our disposal, each of which runs at a speed of V flops.

The R processors actually run the tours are usually referred to as the slaves, while the

processor controlling them is known as the master. Suppose also that there are no latencies

in communicating with the slaves. The following code is run:

Code on master:

begin program
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read input; initialization;

start slaves (i=1,. . . ,R);

receive results(1,. . .,R);

evaluate results;

end program

Code on slaves:

begin program

receive parameters from master;

generate 1 tour;

send result to master;

end program

Let Ai be the random variable representing the number of float-point operations required

to complete tour i on processor i. Recall that i runs from 1 to R and crucially, that the Ai

are i.i.d. Then the following proposition summarizes the speed up we can expect to attain

with our parallel algorithm. The proof is given in Appendix A.1.

Proposition 4.1 (Speed-up from regeneration in parallel). Suppose we have an i.i.d sample

A1, A2, . . . , AR, with E[A2
i ] < ∞ and Ai ≥ 1 for all i. If we denote A(R) as the maximal

order statistic, then the expected speed-up is bounded above and below by

R× sup
α∈[0,1]

αPr(A1 ≥ αA(R)) ≤ E[S] ≤ R×min


√√√√E[A2

i ]E

[
1

A2
(R)

]
, 1

 , (11)

where the speed up S is given by

S =

∑R
i=1 Ai
A(R)

. (12)

Recall that we want to illustrate how the extent of the speed-up depends on the distri-

bution of the tour lengths. We do this with two examples.
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Figure 1: The level-plot is created using the equation z = xy, where x, y ∈ [0, 1]. The

overlayed curve in blue is Pr(A1 ≥ αA(R)) against α for a Poisson random variable

with λ = 50 and taking R = 50, 000 tours. 100 samples of 50,000 tours were taken in

order to estimate the curve.

As a first example, consider the extreme case where the tours are degenerate random

variables. Then Ai = A(R) almost surely and the upper and lower bounds would equal R.

In that situation, we would obtain the maximum possible speed-up from the algorithm. On

the other hand, suppose we know that the tour lengths are Poisson random variables with

λ = 50, and we wish to run R = 50, 000 tours. Figure 1 allows us to visualise the lower bound

from Proposition 4.1. The closer the curve is to the top right hand corner, the greater the

lower bound of the speed up will be. Here, we can estimate the lower bound to be slightly

more than 40%.

In this small example, we can in fact empirically compute the true speed-up for each

of the 100 realisations of the 50,000 tours. Thus we can estimate the true value of E[S]
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and compare it to the value provided by the lower bound. When we do so, we obtain

E[S] = 60.9%×R. With this simple simulation case, we can also estimate the upper bound

from 11 to be 61.3% × R. Thus the upper bound provided by Proposition 4.1 can be very

tight. When we have knowledge of the tour distributions, the bounds can be used to decide

if it is worth scaling up the number of processors to R.

5 Examples

In this section we look at two examples. The first subsection, which uses a oneway model,

illustrates the accuracy of the calculations of the concatenated chains. The second example,

which looks at a more general hierarchical model, show how our method works in a practical

example.

5.1 Oneway Hierarchical Linear Model

In this section, we assess if running regenerative chains in the manner we purport - by

generating tours completely independent of each other and then concatenating them, will

provide confidence intervals with the correct coverage. The model we shall consider is the

oneway hierarchical linear model, as specified in Hobert & Geyer (1998):

yij = θi + εij, i = 1, 2, . . . , K; j = 1, 2, . . .mi, (13)

where

yij|θ, λe ∼ N(θi, λ
−1
e ),

θ|µ, λθ ∼ N(1µ, Iλ−1
θ ), λe ∼ Gamma(a2, b2),

µ ∼ N(µ0, λ
−1
0 ), λθ ∼ Gamma(a1, b1).

Suppose that K = 2, and mi = m for all i. In this simple case, we can analytically
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integrate out µ and λe and then numerically obtain (any function of) the posterior means of

θ1, θ2 and λθ. We used the triplequad function of MATLAB, which allows computation of

a triple integral, but there are many other programs that will do the job too. Let the joint

density be

h(θ, µ, λθ, λe,y) = f(y|θ, λe)f(θ|µ, λθ)f(λe)f(µ)f(λθ). (14)

Then the following simple proposition reduces the expression for the posterior mean for θ

and λθ from a 5-dimensional integral to a 3-dimensional one. The proof is given in Appendix

A.2

Proposition 5.1.

E(ζ|y) =

∫
ζh(θ, µ, λθ, λe,y)d(θ, λθ, λe, µ)∫
h(θ, µ, λθ, λe,y)d(θ, λθ, λe, µ)

=

∫
ζf1(λθ,θ)f2(θ,y)f(λθ)d(θ1, θ2, λθ)∫
f1(λθ,θ)f2(θ,y)f(λθ)d(θ1, θ2, λθ)

, (15)

where ζ = θ1, θ2 or λθ, and

f1(θ, λθ) =
λθ

(λ0 + 2λθ)1/2
exp

{
−λθ

2

(
θ2

1 + θ2
2

)
+

(λ0µ0 + λθθ1 + λθθ2)2

2(λ0 + 2λθ)

}
,

f2(θ,y) =

(
b2 +

1

2

K∑
j=1

m∑
i=1

(yij − θj)2

)−m−a2

.

5.1.1 Minorizing this chain

For this model, the usual way of obtaining samples from the posterior distribution is by

running a Gibbs sampler. Suppressing the dependence on y, the univariate conditional
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densities needed for the Gibbs sampler are

λθ|λe, µ,θ ∼ Gamma

(
K

2
+ a1, b1 +

1

2

∑
i

(θi − µ)2

)
,

λe|λθ, µ,θ ∼ Gamma

(
N

2
+ a2, b2 +

1

2

∑
i,j

(yij − θi)2

)
,

µ|λθ, λe,θ ∼ N

(
λ0µ0 +Kλθθ̄

λ0 +Kλθ
,

1

λ0 +Kλθ

)
,

θi|λθ, λe, µ,θ−i ∼ N

(
λθµ+miλeȳi
λθ +miλe

,
1

λθ +miλe

)
i = i, . . . ,K.

(16)

It is not necessary to restrict the dimensions of the problem to K = 2 in order to minorize

this chain, so we shall work with the general case. Denote the state of the Gibbs sampler

using a vector of length K + 3. Thus Xn = x means that λnθ = x1, λne = x2, µn = x3 and

θn = (xn4 , . . . , x
n
K+3). Updating λ0 first, then (λe, µ), and finally θ, yields a 3-stage Gibbs

sampler. This is a cyclic permutation of the chain that was proven to be geometrically

ergodic in Hobert et al. (2002). If we use p1, . . . , pK+3 to represent each of the conditional

densities above, we can write the entire Markov transition density as

p(x,w) =p1(w1|x2, x3, . . . , xK+3)

p2(w2|w1, x3, x4, . . . , xK+3)

p3(w3|w1, w2, x4, . . . , xK+3)

p4(w4|w1, w2, w3, x5, . . . , xK+3) · · ·

pK+3(wK+3|w1, w2, w3, w4, . . . , wK+2).

Following Mykland et al. (1995), we shall minorize this Gibbs sampler in the following way.

Choosing a distinguished point x̃ and a compact set D, we have

p(x,w) = inf
z∈D

p(x, z)

p(x̃, z)︸ ︷︷ ︸
s(x)

p(x̃,w)I[w ∈ D]︸ ︷︷ ︸
ν(dw)

. (17)
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Figure 2: Density plots of the point estimator ḡR of (8) from each of 100 runs to

estimate the values in Table 2. The solid red line is based on the first 25, 000 tours,

and the solid cyan line uses all 50, 000 tours. The corresponding dashed lines are

the theoretical normal distributions that are being estimated.

The infimum over D can be computed analytically, so as to avoid using a software optimiza-

tion routine. The details are given in Appendix A.3.

5.1.2 The experiment

In order to assess the performance of the regenerative chains, we shall fix the hyper-parameters

as λ0 = 20.3, µ0 = 2.19, a1 = 2.1, b1 = 4.3, a2 = 2.1 and generate a dataset withm1 = m2 = 7

observations. Using the method outlined in Proposition 5.1, we can numerically compute the

posterior means of θ1, θ2 and λθ. This is the gold standard that the regenerative procedure

should pick up and form confidence intervals around.

Figure 2 contains density plots of the point estimator ḡR from each of 100 runs to estimate
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Figure 3: Boxplots of timings of 10, 000 tours of the dataset in Figure 2. The 10, 000
were run 20 times each on 1, 2, 4 and 5 slaves, shown on the y-axis of the graph.

For each run in the 5 slave case, for example, each processor was tasked to run

2,000 tours.

the values in Table 2. All 100 × 50000 = 5000000 tours were used to compute an estimate

of σ2, the asymptotic variance in the regenerative CLT. Then taking into consideration only

the first 25K tours, the density plot from the X̄ of the 100 chains gives the solid red lines

in the top 2 panels. The solid cyan line comes from using all 50000 tours in each of the

100 chains. The dashed lines depict the theoretical normal distributions that the X̄ should

be close to. The figure shows us that as we collect more and tours, the distribution of ḡR

approaches what we expect. Table 3 indicates that the coverage probabilities also approach

the nominal value as we collect more tours.

It is also worth looking at the speed-up we gain from splitting this small example over

multiple processors. This benefit is summarized in Figure 3. The maximum time taken (over
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Table 2: Numerically computed posterior means for test dataset

E(λθ|y) E(θ1|y) E(θ1|y)
0.1361 0.5208 -3.9258

Table 3: Empirical coverage probabilities for test dataset

E(λθ|y) E(θ1|y) E(θ1|y)
After 25,000 tours 0.89 0.93 0.94
After 50,000 tours 0.95 0.91 0.95

the 5 processors) is used to form the boxplot in the top row in the plot. The box-and-whisker

plot suggests that the speed up gained as we utilise more processors is very significant.

5.2 Hierarchical Linear Mixed Model

In this section, we demontrate the use of our methodology on the Hierarchical Linear Mixed

Model analyzed in Hobert et al. (2006), whose block Gibbs sampler has recently been proven

to be geometrically ergodic. The minorization introduced there will also be presented and

used in the numerical example that follows.

The model is the Bayesian version of the usual frequentist general linear mixed model:

Y |β, u,R,D ∼ Nn(Xβ + Zu,R−1),

β|u,R,D ∼ Np(β0, B
−1),

u|D,R ∼ Nq(0, D
−1),

R = λRIn where λR ∼ Gamma(r1, r2),

D = λDIq where λD ∼ Gamma(d1, d2).

(18)

The parameters β0, B, r1, r2, d1 and d2 are all assumed to be known, and X is assumed to be

of full column rank. If we let ξ = (u, β), then the Gibbs chain samples the variables in the
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following manner:

(λD, λR, ξ)→ (λ′D, λ
′
R, ξ)→ (λ′D, λ

′
R, ξ

′).

We essentially have a 2-stage Gibbs sampler, as we can see from the conditionals that λD

and λR are independent of each other when given ξ. These are the full conditionals:

(λD|ξ, Y ) ∼ Gamma

(
q

2
+ d1, d2 +

1

2
uTu

)
,

(λR|ξ, Y ) ∼ Gamma

(
n

2
+ r1, r2 +

1

2
(Y −Xβ − Zu)T (Y −Xβ − Zu)

)
,

(ξ|R,D, Y ) ∼ Np+q(ξ0,Σ
−1),

where the mean and the covariance matrix for ξ are given by

Σ =

ZTRZ +D ZTRX

XTRZ XTRX +B

 and ξ0 = Σ−1

 ZTRY

XTRY +Bβ0

 .

Choosing a distinguished set for the 2 variables λR and λD, the Mykland et al. (1995)

method would lead us to the minorization

p((λD, λR, ξ), (λ
′
D, λ

′
R, ξ

′)) ≥
[

inf
λD∈D1

π(λD|ξ)
π(λD|ξ̃)

] [
inf

λR∈D2

π(λR|ξ)
π(λR|ξ̃)

]
× p((λ̃D, λ̃R, ξ̃), (λ′D, λ′R, ξ′))I[λ′D ∈ D1]I[λ′R ∈ D2].

The small function can be analytically evaluated, avoiding any numerical optimization rou-

tines.

For a numerical example of this model of a realistic size, we shall use a dataset from

genetics. In particular, we shall re-use the Carbon Isotope Dataset used in Gonzalez-Martinez

et al. (2008). The phenotype was Carbon Isotope Discrimination (CID), and the aim of

that paper was to use the Quantitative Transmission Disequilibrium Test to pick out SNPs

that were associated with the CID, which is a long-used measure of water use efficiency. This

dataset was re-analyzed using BAMD in Li et al. (2011). BAMD uses a hierarchical linear mixed
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Table 4: Timings for 100 tours using the hierarchical linear mixed model on the

CID dataset.

1 processor 9.60 mins
2 processors 4.66 mins
5 processors 1.34 mins

model to account for missing values in the SNPs. Briefly, it is a Gibbs sampler with the

missing entries in the Z-matrix considered as parameters, and is available as an R package

(Gopal et al. , 2011).

This dataset consisted of 894 observations from 61 families, and 46 SNPs. The X matrix

consisted of columns defining the family from which an observation was obtained. Each

column of the Z-matrix represented a SNP, and each entry was one of 3 possible values,

reflecting the precise genotype that an individual carried for each particular SNP. Overall,

there were about 10% of entries missing in the Z-matrix. For our purpose, we shall simply

use the most frequently imputed genotype from the BAMD output to “complete” the Z-matrix

and regenerate the Hierarchical Linear Mixed Model as our aim is to demonstrate the speed

up we can obtain, as the previous sub-section has already highlighted the validity of our

method. The average tour length for this dataset was found to be 4.38 and, as can be seen

in Table 4, the use of 5 processors can result in a speed-up of 86% over using one processor.

5.3 Implementation in R

We have implemented the parallel methodology discussed above in R, in the package McParre

(Mc-Pear-Ree). It is available on CRAN at http://cran.r-project.org/package=McParre.

The minimal inputs to the algorithm are

1. The one-step regeneration function of the Markov chain. Given the current state, this

function should return a draw from the Markov chain.

2. A function to compute the regeneration probability for the bell variable given in equa-

tion 3.
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In its current incarnation, the package includes parallel regeneration code for the hier-

archical oneway model with proper and improper priors (see Hobert & Geyer (1998) and

Tan & Hobert (2009)), and the hierarchical linear mixed model presented in Hobert et al.

(2006). Communication between slaves and master is carried out using the Message Passing

Interface (MPI) standard, as specified in Snir et al. (1998) and Gropp et al. (1998). This

is the de facto standard for MIMD architectures that our algorithm is suited for. McParre

calls the MPI routines it needs through the R-package Rmpi, which provides an R interface

to the MPI libraries.

6 Discussion

We have presented a method to run regenerative Markov chains in parallel. Via Proposition

3.1, we have shown that it is theoretically sound. Through the oneway HLM, we have empir-

ically demonstrated that the parallel version of regenerative chains has the correct coverage

probability, and that it can provide a considerable speed-up as processors are increased.

Running regenerative Markov chains in parallel introduces several new operational issues

to consider. For example, if we have incomplete tours as a result of having limited time on

the cluster, how best can the information in these tours be used? If the processors are of

varying speeds, how can we learn the optimal allocation of tours to processors and share

this information with minimal message passing? With the cheap proliferation of clusters, we

strongly believe that these issues, which are peculiar to parallel and distributed algorithms,

need to be considered and investigated.
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A Proofs

A.1 Proof of Proposition 4.1

Proof. The first half of the upper bound is direct: Since Ai ≤ A(R) for all i, it follows that

S =

∑R
i=1Ai
A(R)

≤
∑R

i=1A(R)

A(R)

= R

For all i, we know that Ai ≥ 1. Then it follows that 0 ≤ 1/A2
(R) ≤ 1. Thus we can apply the

Cauchy-Schwarz inequality to obtain

E[S] =
R∑
i=1

E[Ai/A(R)] ≤
R∑
i=1

√√√√E[A2
i ]E

[
1

A2
(R)

]
= R×

√√√√E[A2
1]E

[
1

A2
(R)

]

For the lower bound, first note that the bivariate random vectors (Ai, A(R)) are identically

distributed. This can be seen from their joint cdfs. For b ≥ a and for any i ∈ {1, 2, . . . , R}

Pr(A1 ≤ a,A(R) ≤ b) = Pr(A1 ≤ a,max{A2, . . . , AR} ≤ b)

= Pr(A1 ≤ a) Pr(max{A2, . . . , AR} ≤ b)

= Pr(Ai ≤ a) Pr(max{A1, . . . , Ai−1, Ai+1, . . . , AR} ≤ b)

= Pr(Ai ≤ a,max{A1, . . . , Ai−1, Ai+1, . . . , AR} ≤ b)

= Pr(Ai ≤ a,A(R) ≤ b)

For b < a, we have that

Pr(A1 ≤ a,A(R) ≤ b) = Pr(b < A1 ≤ a,A(R) ≤ b) + Pr(A1 ≤ b, A(R) ≤ b)

= 0 + Pr(A1 ≤ b, A(R) ≤ b)

= Pr(Ai ≤ b, A(R) ≤ b)
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where the last equality follows from the b ≥ a case directly above. Going back to the lower

bound, we have

E[S] = E

[∑R
i=1Ai
A(R)

]

=
R∑
i=1

E
[
Ai
A(R)

]
= R× E

[
A1

A(R)

]
(by above)

≥ R× αPr

[
A1

A(R)

≥ α

]
(by Markov’s inequality)

≥ R sup
α∈[0,1]

Pr

[
A1

A(R)

≥ α

]

A.2 Proof of Proposition 5.1

Proof. The first equality holds because the joint posterior density is given by

f(θ, µ, λθ, λe|y) =
h(θ, µ, λθ, λe,y)∫

h(θ, µ, λθ, λe,y)d(θ, λθ, λe, µ)

For the second equality, note that in simpifying the integrals, we can drop any terms that

do not involve θ, λθ, µ or λe since they will cancel out in the ratio of integrals. Whenever

this is done in the sequel, we shall indicate it with a
.
=. To get rid of µ, observe that
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∫
f(θ|µ, λθ)f(µ)dµ =

(
λθ
2π

)(
λ0

2π

)1/2 ∫
exp

{
−λθ

2

[
(θ1 − µ)2 + (θ2 − µ)2

]2 − λ0

2
(µ− µ0)2

}
dµ

.
= λθ

∫
exp

{
−λ0

2

(
µ2 − 2µµ0 + µ2

0

)
− λθ

2

(
θ2

1 − 2µθ1 + µ2 + θ2
2 − 2µθ2 + µ2

)}
dµ

.
= λθ

∫
exp

{
−λ0

2

(
µ2 − 2µµ0

)
− λθ

2

(
2µ2 − 2µ(θ1 + θ2) + θ2

2 + θ2
1

)}
dµ

= λθ exp

{
−λθ

2

(
θ2

1 + θ2
2

)}∫
exp

{
−1

2

[
(λ0 + 2λθ)µ

2 − 2µ(λ0µ0 + λθθ1 + λθθ2)
]}

dµ

= λθ exp

{
−λθ

2

(
θ2

1 + θ2
2

)}( 2π

λ0 + 2λθ

)1/2

exp

{
(λ0µ0 + λθθ1 + λθθ2)2

2(λ0 + 2λθ)

}
.
=

λθ
(λ0 + 2λθ)1/2

exp

{
−λθ

2

(
θ2

1 + θ2
2

)
+

(λ0µ0 + λθθ1 + λθθ2)2

2(λ0 + 2λθ)

}
≡ f1(θ, λθ)

To get rid of λe, observe that

∫
f(y|θ, λe)f(λe)dλe =

∫ (
λe
2π

)m
exp

{
λe
2

K∑
j=1

m∑
i=1

(yij − θj)2

}
ba2

2

Γ(a2)
λa2−1
e exp {−λeb2} dλe

=
ba2

2

(2π)mΓ(a2)

∫
λm+a2−1
e exp

{
−λe

(
b2 +

1

2

K∑
j=1

m∑
i=1

(yij − θj)2

)}
dλe

.
=

Γ(m+ a2)(
b2 + 1

2

∑K
j=1

∑m
i=1(yij − θj)2

)m+a2

.
=

(
b2 +

1

2

K∑
j=1

m∑
i=1

(yij − θj)2

)−m−a2

≡ f2(θ,y)

Substituting the above analytical expressions into h(·) in equations (14) and (15), we have

that ∫
ζh(θ, µ, λθ, λe,y)d(θ, λθ, λe, µ) =

∫
ζf1(λθ,θ)f2(θ,y)f(λθ)d(θ1, θ2, λθ) (19)

26



and ∫
h(θ, µ, λθ, λe,y)d(θ, λθ, λe, µ) =

∫
f1(λθ,θ)f2(θ,y)f(λθ)d(θ1, θ2, λθ) (20)

A.3 Details of the Minorization in (17)

Consider p(x, z)/p(x̃, z), and define x̄ = (1/K)
∑K

i=1 xi+3 and ¯̃x = (1/K)
∑K

i=1 x̃i+3. Then

p(x, z)

p(x̃, z)
=

[
b1 + 1

2

∑
i(xi+3 − x3)2

]K/2+a1 z
K/2+a1−1
1 exp

(
−z1

[
b1 + 1

2

∑
i(xi+3 − x3)2

])[
b1 + 1

2

∑
i(x̃i+3 − x̃3)2

]K/2+a1 z
K/2+a1−1
1 exp

(
−z1

[
b1 + 1

2

∑
i(x̃i+3 − x̃3)2

])
×

[
b2 + 1

2

∑
i,j(yij − xi+3)2

]N/2+a2

z
N/2+a2−1
2 exp

(
−z2

[
b2 + 1

2

∑
i,j(yij − xi+3)2

])
[
b2 + 1

2

∑
i,j(yij − x̃i+3)2

]N/2+a2

z
N/2+a2−1
2 exp

(
−z2

[
b2 + 1

2

∑
i,j(yij − x̃i+3)2

])

×

(
λ0+Kz1

2π

)1/2
exp

(
−λ0+Kz1

2

[
z3 − λ0µ0+Kz1x̄

λ0+Kz1

]2
)

(
λ0+Kz1

2π

)1/2
exp

(
−λ0+Kz1

2

[
z3 − λ0µ0+Kz1 ¯̃x

λ0+Kz1

]2
) .

Minimizing this is equivalent to minimizing log(p(x, z)/p(x̃, z)), and

log
p(x, z)

p(x̃, z)
= Constant − z1

1

2

K∑
i=1

[
(xi+3 − x3)2 − (x̃i+3 − x̃3)2

]
︸ ︷︷ ︸

C1

−z2
1

2

∑
i,j

[
(yij − xi+3)2 − (yij − x̃i+3)2

]
︸ ︷︷ ︸

C2

−
(
λ0 +Kz1

2

)[(
z3 −

λ0µ0 +Kz1x̄

λ0 +Kz1

)2

−
(
z3 −

λ0µ0 +Kz1
¯̃x

λ0 +Kz1

)2
]
.
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The final expression in the above display can be simplified to yield

−
(
λ0 +Kz1

2

)(
λ0µ0 +Kz1

¯̃x− λ0µ0 −Kz1x̄

λ0 +Kz1

)(
2z3 −

2λ0µ0 +Kz1(¯̃x+ x̄)

λ0 +Kz1

)
= −Kz1(¯̃x− x̄)

2

(
2z3 −

2λ0µ0 +Kz1(¯̃x+ x̄)

λ0 +Kz1

)
.

Hence we can define the function

g(z1, z2, z3) = −z1C1 − z2C2 −
Kz1(¯̃x− x̄)

2

(
2z3 −

2λ0µ0 +Kz1(¯̃x+ x̄)

λ0 +Kz1

)
, (21)

and attempt to find (z∗1 , z
∗
2 , z
∗
3) that minimizes g over

D = [d11, d12]× [d21, d22]× [d31, d32].

From (21), the partial derivatives are

∂g

∂z1

= −C1 −K(¯̃x− x̄)z3 +
1

2
K(¯̃x− x̄)

[
2λ0µ0 +Kz1(¯̃x− x̄)

λ0 +Kz1

]
,

+
1

2
K(¯̃x− x̄)z1

[
Kλ0(¯̃x+ x̄)− 2λ0µ0K

(λ0 +Kz1)2

]
∂g

∂z2

= −C2,

∂g

∂z3

= −Kz1(¯̃x− x̄).

Since z1 > 0, we can set z∗2 and z∗3 once we know the signs of ∂g/∂z2 and ∂g/∂z3 above. For

z∗1 , we can set ∂g/∂z1 = 0 and solve for the roots. Here are the coefficients of the quadratic

equation in z1:

Coeff of z2
1 =

1

2
K2 (−2C1 −K(¯̃x− x̄)(2z3 − ¯̃x− x̄)) ,

Coeff of z1 = 2Kλ0(−C1 −Kz3(¯̃x− x̄)) +K(¯̃x− x̄)(Kλ0(¯̃x+ x̄)),

Constant term = λ2
0 [−C1 −K(¯̃x− x̄)z3 +Kµ0(¯̃x− x̄))] .
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